黄老师 发表于 2014-11-16 11:00:00

福师14秋《线性代数与概率统计》在线作业答案

福师《线性代数与概率统计》在线作业一
试卷总分:100   测试时间:--
一、单选题(共50道试题,共100分。)
1.指数分布是( )具有记忆性的连续分布
A. 唯一
B. 不
C. 可能
D. 以上都不对
满分:2分
2.如果随机变量X服从标准正态分布,则Y=-X服从( )
A. 标准正态分布
B. 一般正态分布
C. 二项分布
D. 泊淞分布
满分:2分
3.设有四台机器编号为M1、M2、M3、M4,共同生产数量很多的一大批同类产品,已知各机器生产产品的数量之比为7:6:4:3,各台机器 产品的合格率分别为90%、95%、85%与80%现在从这批产品中查出一件不合格品,则它产自(  )的可能性最大。
A. M1
B. M2
C. M3
D. M4
满分:2分
4.一台仪表是以0.2为刻度的,读数时选取最靠近的那个刻度,则实际测量值与读数之偏差大于0.05概率为( )
A. 0.1
B. 0.3
C. 0.5
D. 0.7
满分:2分
5.设两个相互独立的事件A和B都不发生的概率为1/9,A发生B不发生的概率与B发生A不发生的概率相等,则P(A)=
A. 1/4
B. 1/2
C. 1/3
D. 2/3
满分:2分
6.利用样本观察值对总体未知参数的估计称为( )
A. 点估计
B. 区间估计
C. 参数估计
D. 极大似然估计
满分:2分
7.10个产品中有7个正品,3个次品,按不放回抽样,依次抽取两个,如果已知第一个取到次品,则两次都取到次品的概率是( )
A. 1/15
B. 1/10
C. 1/5
D. 1/20
满分:2分
8.将飞机分为甲、乙、丙三个不同的区域,当飞机遭到射击时,如果飞机中区域甲被击中一弹或乙被击中两弹或区域丙被击中三弹,则飞机都会被击落,已知各弹的击中与否是相互独立的,并且每弹命中各区域的概率与每个区域在飞机上所占有的面积成正比,高三个区域的面积比为1:2:7。若飞机被击中二弹,则飞机被击落的概率是( )
A. 0.81
B. 0.37
C. 0.64
D. 0.23
满分:2分
9.对有一百名学生的班级考勤情况进行评估,从课堂上随机地点十位同学的名字,如果没人缺席,则评该班考勤情况为优。如果班上学生的缺席人数从0到2是等可能的,并且已知该班考核为优,则该班实际上确实全勤的概率是( )
A. 0.412
B. 0.845
C. 0.686
D. 0.369
满分:2分
10.设试验E为在一批灯泡中,任取一个,测试它的寿命。则E的基本事件空间是( )
A. {t|t>0}
B. {t|t<0}
C. {t|t=100}
D. {t|t≧0}
满分:2分
11.在投掷一枚骰子的试验中,观察出现的点数。设A=“出现的点数大于3”,试问:A是由几个基本事件复合而成的( )
A. 1个
B. 2个
C. 3个
D. 4个
满分:2分
12.现考察某个学校一年级学生的数学成绩,现随机抽取一个班,男生21人,女生25人。则样本容量为( )
A. 21
B. 25
C. 46
D. 4
满分:2分
13.设试验E为从10个外形相同的产品中(8个正品,2个次品)任取2个,观察出现正品的个数。试问E的样本空间是( )
A. {0}
B. {1}
C. {1,2}
D. {0,1,2}
满分:2分
14.由概率的公理化定义可推知两个对立事件的概率之和为( )
A. 0
B. 0.5
C. 0.6
D. 1
满分:2分
15.设随机变量X与Y相互独立,D(X)=2,D(Y)=4,D(2X-Y)=
A. 12
B. 8
C. 6
D. 18
满分:2分
16.设随机变量X服从二点分布,则{X=0}与{X=1}这两个事件的概率之和为( )
A. 1
B. 0.5
C. 0.1
D. 0.8
满分:2分
17.设P(A)=a,P(B)=b,P(A+B)=C,则B的补集与A相交得到的事件的概率是
A. a-b
B. c-b
C. a(1-b)
D. a(1-c)
满分:2分
18.某一路公共汽车,严格按时间表运行,其中某一站汽车每隔5分钟来一趟。则乘客在车站等候的时间小于3分钟的概率是( )
A. 0.4
B. 0.6
C. 0.1
D. 0.5
满分:2分
19.相继掷硬币两次,则样本空间为
A. Ω={(正面,反面),(反面,正面),(正面,正面),(反面,反面)}
B. Ω={(正面,反面),(反面,正面)}
C. {(正面,反面),(反面,正面),(正面,正面)}
D. {(反面,正面),(正面,正面)}
满分:2分
20.下列试验不属于古典型随机试验的是( )
A. 试验E为掷一枚硬币
B. 试验E为从一箱(装有50个灯泡)中抽取一个灯泡
C. 试验E为某人连续射击两次
D. 试验E为测试某一电器的使用寿命
满分:2分
21.概率的统计定义不满足下列性质( )
A. 非负性
B. 正则性
C. 有限可加性
D. 可列可加性
满分:2分
22.袋中有4白5黑共9个球,现从中任取两个,则这少一个是黑球的概率是
A. 1/6
B. 5/6
C. 4/9
D. 5/9
满分:2分
23.已知全集为{1,3,5,7},集合A={1,3,5},则A的对立事件为
A. {1,3}
B. {1,3,5}
C. {5,7}
D. {7}
满分:2分
24.正态分布的概率密度曲线的形状为( )
A. 抛物线
B. 直线
C. 钟形曲线
D. 双曲线
满分:2分
25.若随机变量X的分布函数已知,则X取各种值的概率可通过分布函数求出,试用分布函数表示P{X>a}=(  )
A. 1-F(a)
B. 1+F(a)
C. F(a)
D. -F(a)
满分:2分
26.设E为掷一颗骰子,以X表示出现的点数,则随机变量X的概率分布为( )
A. P{X=n}=1/6, (n=1,2,3,4,5,6)
B. P{X=n}=n/6 (n=1,2,3,4,5,6)
C. P{X=n}=(n-1)/6 (n=1,2,3,4,5.6)
D. P{X=n}=1-n/6 (n=1,2,3,4,5,6)
满分:2分
27.200个新生儿中,男孩数在80到120之间的概率为(  ),假定生男生女的机会相同
A. 0.9954
B. 0.7415
C. 0.6847
D. 0.4587
满分:2分
28.相继掷硬币两次,则事件A={两次出现同一面}应该是
A. Ω={(正面,反面),(正面,正面)}
B. Ω={(正面,反面),(反面,正面)}
C. {(反面,反面),(正面,正面)}
D. {(反面,正面),(正面,正面)}
满分:2分
29.设一百件产品中有十件次品,每次随机地抽取一件,检验后放回去,连续抽三次,计算最多取到一件次品的概率( )
A. 0.45
B. 0.78
C. 0.972
D. 0.25
满分:2分
30.甲、乙、丙三人同时向一架飞机射击,它们击中目标的概率分别为0.4,0.5,0.7。假设飞机只有一人击中时,坠毁的概率为0.2,若有2人击中,飞机坠毁的概率为0.6,而飞机被3人击中时一定坠毁。现在发现飞机已被击中坠毁,则它是由3人同时击中的概率是( )
A. 0.306
B. 0.478
C. 0.532
D. 0.627
满分:2分
31.相继掷硬币两次,则事件A={第一次出现正面}应该是
A. Ω={(正面,反面),(正面,正面)}
B. Ω={(正面,反面),(反面,正面)}
C. {(反面,反面),(反面,正面)}
D. {(反面,正面),(正面,正面)}
满分:2分
32.一个装有50个球的袋子中,有白球5个,其余的为红球,从中依次抽取两个,则抽到的两球均是红球的概率是( )
A. 0.85
B. 0.808
C. 0.64
D. 0.75
满分:2分
33.设随机事件A,B及其和事件A∪B的概率分别是0.4,0.3和0.6,则B的对立事件与A的积的概率是
A. 0.2
B. 0.5
C. 0.6
D. 0.3
满分:2分
34.设试验E为袋中有编号为1,2,3,4,5的五个球,从中任取一个,观察编号的大小问这个试验E的样本空间是( )
A. {1,2,3,4,5}
B. {1,3,5
C. {2,4,6}
D. {0}
满分:2分
35.随机试验的特性不包括( )
A. 试验可以在相同条件下重复进行
B. 每次试验的结果不止一个,但试验之前能知道试验的所有可能结果
C. 进行一次试验之前不能确定哪一个结果会出现
D. 试验的条件相同,试验的结果就相同
满分:2分
36.任何一个随机变量X,如果期望存在,则它与任一个常数C的和的期望为( )
A. EX
B. EX+C
C. EX-C
D. 以上都不对
满分:2分
37.一大批产品的优质品率是30%,每次任取一件,连续抽取五次,则取到的五件产品中恰有两件是优质品的概率是( )
A. 0.684
B. 0.9441
C. 0.3087
D. 0.6285
满分:2分
38.现有号码各异的五双运动鞋(编号为1,2,3,4,5),一次从中任取四只,则四只中的任何两只都不能配成一双的概率是( )
A. 0.58
B. 0.46
C. 0.48
D. 0.38
满分:2分
39.一批10个元件的产品中含有3个废品,现从中任意抽取2个元件,则这2个元件中的废品数X的数学期望为( )
A. 3/5
B. 4/5
C. 2/5
D. 1/5
E.
满分:2分
40.对任意两个事件A与B,有P(A+B)=
A. P(A)+P(B)
B. P(A)+P(B)-P(AB)
C. P(A)-P(B)
D. P(A)+P(B)+P(AB)
满分:2分
41.假设一厂家一条自动生产线上生产的每台仪器以概率0.8可以出厂,以概率0.2需进一步调试,经调试后,以概率0.75可以出厂,以概率0.25定为不合格品而不能出厂。现该厂新生产了十台仪器(假设各台仪器的生产过程相互独立),则十台仪器中能够出厂的仪器期望值为( )
A. 9.5
B. 6
C. 7
D. 8
满分:2分
42.现抽样检验某车间生产的产品,抽取100件产品,发现有4件次品,60件一等品,36件二等品。问此车间生产的合格率为()
A. 96﹪
B. 4﹪
C. 64﹪
D. 36﹪
满分:2分
43.在某医院,统计表明第一季度出生1000个婴儿中,有3个婴儿死亡,则我们认为这个医院的婴儿死亡率为( )
A. 3‰
B. 3﹪
C. 3
D. 0.3
满分:2分
44.若A,B,C表示三个射手击中目标,则“三个射手中至少有一个射手击中目标”可用()表示
A. A+B+C
B. ABC
C. AB+C
D. A(B-C)
满分:2分
45.电路由元件A与两个并联的元件B、C串联而成,若A、B、C损坏与否是相互独立的,且它们损坏的概率依次为0.3,0.2,0.1,则电路断路的概率是
A. 0.325
B. 0.369
C. 0.496
D. 0.314
满分:2分
46.进行n重伯努利试验,X为n次试验中成功的次数,若已知EX=12.8,DX=2.56则n=( )
A. 6
B. 8
C. 16
D. 24
E.
满分:2分
47.某车队里有1000辆车参加保险,在一年里这些车发生事故的概率是0.3%,则这些车在一年里有10辆以内发生事故的概率是( )
A. 0.9997
B. 0.9447
C. 0.4445
D. 0.112
满分:2分
48.在长度为a的线段内任取两点将其分成三段,则它们可以构成一个三角形的概率是
A. 1/4
B. 1/2
C. 1/3
D. 2/3
满分:2分
49.设在某种工艺下,每25平方米的棉网上有一粒棉结,今从某台梳棉机上随机取得250平方厘米棉网,则其中没有棉结的概率是( )
A. 0.000045
B. 0.01114
C. 0.03147
D. 0.36514
满分:2分
50.设在实验台上装置了4只电子管,在整个实验过程中,每只电子管烧坏的概率为0.1,假设各电子管的状态互不影响,则在整个试验过程中,至多烧坏一只电子管的概率为( )
A. 0.85
B. 0.65
C. 0.28
D. 0.60A
满分:2分
福师《线性代数与概率统计》在线作业二
试卷总分:100   测试时间:--
一、单选题(共50道试题,共100分。)
1.设试验E为在一批灯泡中,任取一个,测试它的寿命。则E的基本事件空间是( )
A. {t|t>0}
B. {t|t<0}
C. {t|t=100}
D. {t|t≧0}
满分:2分
2.10个产品中有7个正品,3个次品,按不放回抽样,依次抽取两个,如果已知第一个取到次品,则第二个又取到次品的概率是( )
A. 0.9
B. 0.6
C. 0.5
D. 2/9
满分:2分
3.正态分布的概率密度曲线下面所围成的面积为( )
A. 1
B. 0.5
C. 0.8
D. 0.4
满分:2分
4.在数字通信中由于存在随机干扰收报台收到的信号与发报台发出的信号可能不同。设发报台只发射两个信号:0与1。已知发报台发射0和1的概率为0.7和0.3又知当发射台发射0时,收报台收到0和1的概率为0.8和0.2,而当发射台发射1时,收报台收到1和0的概率为0.9和0.1某次收报台收到了信号0则此时发射台确实发出的信号是0的概率是( )
A. 0.782
B. 0.949
C. 0.658
D. 0.978
满分:2分
5.任何一个随机变量X,如果期望存在,则它与任一个常数C的和的期望为( )
A. EX
B. EX+C
C. EX-C
D. 以上都不对
满分:2分
6.袋中有4白5黑共9个球,现从中任取两个,则两个均为白球的概率是
A. 1/6
B. 5/6
C. 4/9
D. 5/9
满分:2分
7.在某医院,统计表明第一季度出生1000个婴儿中,有3个婴儿死亡,则我们认为这个医院的婴儿死亡率为( )
A. 3‰
B. 3﹪
C. 3
D. 0.3
满分:2分
8.袋中有4白5黑共9个球,现从中任取两个,则两个一个是白球一个是黑球的概率是
A. 1/6
B. 5/6
C. 4/9
D. 5/9
满分:2分
9.以A表示事件“甲种产品畅销,乙种产品滞销”,则A的对立事件为
A. 甲滞销,乙畅销
B. 甲乙均畅销
C. 甲滞销
D. 甲滞销或乙畅销
满分:2分
10.设随机变量X服从二点分布,则{X=0}与{X=1}这两个事件的概率之和为( )
A. 1
B. 0.5
C. 0.1
D. 0.8
满分:2分
11.事件A={a,b,c},事件B={a,b},则事件A+B为
A. {a}
B. {b}
C. {a,b,c}
D. {a,b}
满分:2分
12.设袋中有k号的球k只(k=1,2,…,n),从中摸出一球,则所得号码的数学期望为( )
A. (2n+1)/3
B. 2n/3
C. n/3
D. (n+1)/3
E.
满分:2分
13.设随机事件A与B相互独立,已知只有A发生的概率和只有B发生的概率都是1/4,则P(A)=( )
A. 1/6
B. 1/5
C. 1/3
D. 1/2
满分:2分
14.如果有试验E:投掷一枚硬币,重复试验1000次,观察正面出现的次数。试判别下列最有可能出现的结果为( )
A. 正面出现的次数为591次
B. 正面出现的频率为0.5
C. 正面出现的频数为0.5
D. 正面出现的次数为700次
满分:2分
15.设随机变量X服从正态分布,其数学期望为10,X在区间(10,20)发生的概率等于0.3。则X在区间(0,10)的概率为( )
A. 0.3
B. 0.4
C. 0.5
D. 0.6
满分:2分
16.某学校二年级的数学成绩统计如下:90分以上12人,80分以上28人,70分以上35人,60分以上23人,60分以下2人。则该班此次考试的不及格率为( )
A. 2﹪
B. 50
C. 0.75
D. 0.25
满分:2分
17.随机变量的含义在下列中正确的是( )
A. 只取有限个值的变量
B. 只取无限个值的变量
C. 它是随机试验结果的函数
D. 它包括离散型或连续型两种形式
满分:2分
18.把一枚硬币连接三次,以X表示在三次中出现正面的次数,Y表示在三次中出现正面的次数与出现反面的次数的差的绝对值,则{X=3,Y=3}的概率为( )
A. 1/8
B. 2/5
C. 3/7
D. 4/9
满分:2分
19.设试验E为从10个外形相同的产品中(8个正品,2个次品)任取2个,观察出现正品的个数。试问E的样本空间是( )
A. {0}
B. {1}
C. {1,2}
D. {0,1,2}
满分:2分
20.环境保护条例规定,在排放的工业废水中,某有害物质含量不得超过0.5‰ 现取5份水样,测定该有害物质含量,得如下数据:0.53‰,0。542‰, 0.510‰ , 0.495‰ , 0.515‰则抽样检验结果( )认为说明含量超过了规定
A. A 能
B. B  不能
C. C 不一定
D. D 以上都不对
满分:2分
21.从5双不同的鞋子中任取4只,求此4只鞋子中至少有两只配成一双的概率是
A. 2/21
B. 3/21
C. 10/21
D. 13/21
满分:2分
22.事件A与B互不相容,则P(A+B)=
A. 0
B. 2
C. 0.5
D. 1
满分:2分
23.事件A={a,b,c},事件B={a,b},则事件AB为
A. {a}
B. {b}
C. {c}
D. {a,b}
满分:2分
24.设X,Y为两个随机变量,则下列等式中正确的是
A. E(X+Y)=E(X)+E(Y)
B. D(X+Y)=D(X)+D(Y)
C. E(XY)=E(X)E(Y)
D. D(XY)=D(X)D(Y)
满分:2分
25.甲、乙、丙三人同时向一架飞机射击,它们击中目标的概率分别为0.4,0.5,0.7。假设飞机只有一人击中时,坠毁的概率为0.2,若有2人击中,飞机坠毁的概率为0.6,而飞机被3人击中时一定坠毁。现在发现飞机已被击中坠毁,则它是由3人同时击中的概率是( )
A. 0.306
B. 0.478
C. 0.532
D. 0.627
满分:2分
26.在投掷一枚骰子的试验中,观察出现的点数。设A=“出现的点数大于3”,试问:A是由几个基本事件复合而成的( )
A. 1个
B. 2个
C. 3个
D. 4个
满分:2分
27.假设一厂家一条自动生产线上生产的每台仪器以概率0.8可以出厂,以概率0.2需进一步调试,经调试后,以概率0.75可以出厂,以概率0.25定为不合格品而不能出厂。现该厂新生产了十台仪器(假设各台仪器的生产过程相互独立),则十台仪器中能够出厂的仪器期望值为( )
A. 9.5
B. 6
C. 7
D. 8
满分:2分
28.设随机变量X与Y相互独立,D(X)=2,D(Y)=4,D(2X-Y)=
A. 12
B. 8
C. 6
D. 18
满分:2分
29.设一个系统上100个互相独立起作用的部件所组成,每个部件损坏的概率为0.1,必须有85个以上的部件工作才能使整个系统工作,则整个系统工作的概率为( )
A. 0.95211
B. 0.87765
C. 0.68447
D. 0.36651
满分:2分
30.设电路供电网中有10000盏灯,夜晚每一盏灯开着的概率都是0.7,假定各灯开、关时间彼此无关,则同时开着的灯数在6800与7200之间的概率为(  )
A. 0.88888
B. 0.77777
C. 0.99999
D. 0.66666
满分:2分
31.已知随机变量X~N(-3,1),Y~N(2,1),且X与Y相互独立,Z=X-2Y+7,则Z~
A. N(0,5)
B. N(1,5)
C. N(0,4)
D. N(1,4)
满分:2分
32.袋内装有5个白球,3个黑球,从中一次任取两个,求取到的两个球颜色不同的概率
A. 15/28
B. 3/28
C. 5/28
D. 8/28
满分:2分
33.对任意两个事件A与B,有P(A+B)=
A. P(A)+P(B)
B. P(A)+P(B)-P(AB)
C. P(A)-P(B)
D. P(A)+P(B)+P(AB)
满分:2分
34.某市有50%住户订日报,有65%住户订晚报,有85%住户至少订这两种报纸中的一种,则同时订两种报纸的住户的百分比是
A. 20%
B. 30%
C. 40%
D. 15%
满分:2分
35.下列试验不属于古典型随机试验的是( )
A. 试验E为掷一枚硬币
B. 试验E为从一箱(装有50个灯泡)中抽取一个灯泡
C. 试验E为某人连续射击两次
D. 试验E为测试某一电器的使用寿命
满分:2分
36.设有六张字母卡片,其中两张是e,两张是s,一张是r,一张是i, 混合后重新 排列,求正好得到series的概率是( )
A. 3/160
B. 1/140
C. 1/180
D. 1/160
满分:2分
37.设试验E为袋中有编号为1,2,3,4,5的五个球,从中任取一个,观察编号的大小问这个试验E的样本空间是( )
A. {1,2,3,4,5}
B. {1,3,5
C. {2,4,6}
D. {0}
满分:2分
38.三人独立破译一密码,他们能单独译出的概率分别为1/5,1/3,1/4,则此密码被译出的概率是
A. 2/5
B. 3/4
C. 1/5
D. 3/5
满分:2分
39.若现在抽检一批灯泡,考察灯泡的使用寿命,则使用寿命X是( )
A. 确定性变量
B. 非随机变量
C. 离散型随机变量
D. 连续型随机变量
满分:2分
40.一台设备由10个独立工作折元件组成,每一个元件在时间T发生故障的概率为0.05。设不发生故障的元件数为随即变量X,则借助于契比雪夫不等式来估计X和它的数学期望的离差小于2的概率为(  )
A. 0.43
B. 0.64
C. 0.88
D. 0.1
满分:2分
41.正态分布是( )
A. 对称分布
B. 不对称分布
C. 关于X对称
D. 以上都不对
满分:2分
42.某车队里有1000辆车参加保险,在一年里这些车发生事故的概率是0.3%,则这些车在一年里有10辆以内发生事故的概率是( )
A. 0.9997
B. 0.9447
C. 0.4445
D. 0.112
满分:2分
43.下列集合中哪个集合是A={1,3,5}的子集
A. {1,3}
B. {1,3,8}
C. {1,8}
D. {12}
满分:2分
44.假设有100件产品,其中有60件一等品,30件二等品,10件三等品,从中一次随机抽取两件,则恰好抽到2件一等品的概率是( )
A. 59/165
B. 26/165
C. 16/33
D. 42/165
满分:2分
45.袋中有4白5黑共9个球,现从中任取两个,则这少一个是黑球的概率是
A. 1/6
B. 5/6
C. 4/9
D. 5/9
满分:2分
46.射手每次射击的命中率为为0.02,独立射击了400次,设随机变量X为命中的次数,则X的方差为( )
A. 8
B. 10
C. 20
D. 6
满分:2分
47.在十个整数0,1,2,3,4,5,6,7,8,9中任取四个不不同的数字,能够组成一个四位偶数的概率是( )
A. 45/90
B. 41/720
C. 53/720
D. 41/90
满分:2分
48.200个新生儿中,男孩数在80到120之间的概率为(  ),假定生男生女的机会相同
A. 0.9954
B. 0.7415
C. 0.6847
D. 0.4587
满分:2分
49.电路由元件A与两个并联的元件B、C串联而成,若A、B、C损坏与否是相互独立的,且它们损坏的概率依次为0.3,0.2,0.1,则电路断路的概率是
A. 0.325
B. 0.369
C. 0.496
D. 0.314
满分:2分
50.设试验E为某人打靶,连续射击二次,观察射击的过程及结果。我们用“+”表示射中,“-”表示没射中。 试判别E的样本空间为( )
A. {+,-}
B. {-,+}
C. {++,+-,-+,--}
D. {--,+-,++}
满分:2分

答案请在附件下载,需要辅导请联系客服qq 761296021
页: [1]
查看完整版本: 福师14秋《线性代数与概率统计》在线作业答案