兰大《高等数学(2)》2020年11月在线考核试题百分
《高等数学(2)》2020年11月考试在线考核试题1.[单选题] 设函数<img id="ODgslyjTEMP20190804111541085.png" src="http://oescdn.open.com.cn/zyglpt/OD/TEMP/2019/0804/ODgslyjTEMP20190804111541085.png?Expires=1880291742&OSSAccessKeyId=gbI8DRLk7JJhLbEw&Signature=1ExwV9olSbIVOPMI01xPiHUkmYo%3D" />,则<img id="ODzrnuxTEMP20190804111542404.png" src="http://oescdn.open.com.cn/zyglpt/OD/TEMP/2019/0804/ODzrnuxTEMP20190804111542404.png?Expires=1880291741&OSSAccessKeyId=gbI8DRLk7JJhLbEw&Signature=nUVXZoSbqJicKEbzK5VUwENbEH8%3D" />( )
无忧答案网答案资料下载,请参考帮助中心说明
A.0
B.1
C.2
D.不存在
答:——D——
2.[单选题] 题面见图5<img height="87" width="541" alt="" src="http://file.open.com.cn/ItemDB/37502/c45b4a37-a04c-4660-880f-7c9aa90e349b/2008114103656700.jpg" />
A.A
B.B
C.C
D.D
答:——B——
3.[单选题] 题面见图7<img height="170" width="484" alt="" src="http://file.open.com.cn/ItemDB/37502/67ebe493-25e3-40a9-808c-76b0bccd865c/20081028162956608.jpg" />
A.A
B.B
C.C
D.D
答:——B——
4.[单选题] 当x→0时,下列变量为无穷小量的是( ) 更多答案进 ap5u.com 答案qw761296021
A.<img id="ODubwxtTEMP20190804111531946.png" src="http://oescdn.open.com.cn/zyglpt/OD/TEMP/2019/0804/ODubwxtTEMP20190804111531946.png?Expires=1880291731&OSSAccessKeyId=gbI8DRLk7JJhLbEw&Signature=t/oKzGNiNx0UWiF6V/mTz5HKiF0%3D" />
B.<img id="ODiurcvTEMP20190804111531032.png" src="http://oescdn.open.com.cn/zyglpt/OD/TEMP/2019/0804/ODiurcvTEMP20190804111531032.png?Expires=1880291732&OSSAccessKeyId=gbI8DRLk7JJhLbEw&Signature=03KY9fQHKw%2B%2BWoDV023wTdAkASY%3D" />
C.<img id="ODvtxbcTEMP20190804111531173.png" src="http://oescdn.open.com.cn/zyglpt/OD/TEMP/2019/0804/ODvtxbcTEMP20190804111531173.png?Expires=1880291732&OSSAccessKeyId=gbI8DRLk7JJhLbEw&Signature=9lllscFOmpxJYoZPlOGGsUdSCO4%3D" />
D.<img id="ODndmeaTEMP20190804111531319.png" src="http://oescdn.open.com.cn/zyglpt/OD/TEMP/2019/0804/ODndmeaTEMP20190804111531319.png?Expires=1880291731&OSSAccessKeyId=gbI8DRLk7JJhLbEw&Signature=ozFbk150trhpTHAY9WZNHfIsryQ%3D" />
答:————
5.[单选题] 下列各微分式正确的是( )
A.<img id="ODegwmgTEMP20190804111542686.png" src="http://oescdn.open.com.cn/zyglpt/OD/TEMP/2019/0804/ODegwmgTEMP20190804111542686.png?Expires=1880291741&OSSAccessKeyId=gbI8DRLk7JJhLbEw&Signature=GUns%2BMZzlT4pNH9KivOFHHLW/Vo%3D" />
B.<img id="ODukvbwTEMP20190804111541669.png" src="http://oescdn.open.com.cn/zyglpt/OD/TEMP/2019/0804/ODukvbwTEMP20190804111541669.png?Expires=1880291742&OSSAccessKeyId=gbI8DRLk7JJhLbEw&Signature=arGaGeaJ/6cGoLSkGzvPiqFJKW8%3D" />
C.<img id="ODwgjvbTEMP20190804111542999.png" src="http://oescdn.open.com.cn/zyglpt/OD/TEMP/2019/0804/ODwgjvbTEMP20190804111542999.png?Expires=1880291741&OSSAccessKeyId=gbI8DRLk7JJhLbEw&Signature=xKRY42sJIwhA1phAa6WD%2BLEZzh0%3D" />
D.<img id="ODelrpwTEMP20190804111543132.png" src="http://oescdn.open.com.cn/zyglpt/OD/TEMP/2019/0804/ODelrpwTEMP20190804111543132.png?Expires=1880291742&OSSAccessKeyId=gbI8DRLk7JJhLbEw&Signature=DHbf10tLGmGwzQaQ6J1q%2Bpyz/l0%3D" />
答:————
6.<ShortAnswer> 求<img id="ODtskqbTEMP20190804111607849.png" src="http://oescdn.open.com.cn/zyglpt/OD/TEMP/2019/0804/ODtskqbTEMP20190804111607849.png?Expires=1880291767&OSSAccessKeyId=gbI8DRLk7JJhLbEw&Signature=v0DJnJ2z1ewKpTdZxRHEuEMlwok%3D" />的极限。(专科做)
答:————
7.<ShortAnswer> <img id="ODnvdpqTEMP20190804111400855.png" src="http://oescdn.open.com.cn/zyglpt/OD/TEMP/2019/0804/ODnvdpqTEMP20190804111400855.png?Expires=1880291640&OSSAccessKeyId=gbI8DRLk7JJhLbEw&Signature=997iBKTCaUFAFchSKEV%2BFUfMS5w%3D" />
答:————
8.<ShortAnswer> <img id="ODbnopgTEMP20190804111340994.png" src="http://oescdn.open.com.cn/zyglpt/OD/TEMP/2019/0804/ODbnopgTEMP20190804111340994.png?Expires=1880291619&OSSAccessKeyId=gbI8DRLk7JJhLbEw&Signature=YJgmz8d7Moff2BxxIGmLsnywLPQ%3D" />
答:————
9.<ShortAnswer> 对于任意非零实数a, b,定义运算“※”如下a※b=,计算2※1+3※2+4※3+…+(n+1) ※n+…的值。
答:————
10.<ShortAnswer> <img id="ODuiapzTEMP20190804111437516.png" src="http://oescdn.open.com.cn/zyglpt/OD/TEMP/2019/0804/ODuiapzTEMP20190804111437516.png?Expires=1880291676&OSSAccessKeyId=gbI8DRLk7JJhLbEw&Signature=X9S3%2BH4K8R7p1mYr4qhcexcZchQ%3D" />
答:————
11.<ShortAnswer> 向量的概念是什么,在立体三维空间向量的表示方法有哪些?
答:————
12.<ShortAnswer> 判断极值点的步骤是哪些?极值点一定是驻点吗?
答:————
13.<ShortAnswer> 什么是交错级数,交错级数的审敛法莱布尼茨定理是什么?
答:————
附件是答案,核对题目下载,转载注明无忧答案网
页:
[1]