欧阳老师 发表于 2018-4-25 09:54:33

西南大学[0464]高等几何18春在线作业

0464
1、<imgsrc="http://fs.eduwest.com/filesys/image.jsp?fc=00quoSr2778cbd2_1441ac087dd_OUL"/>

    <imgsrc='http://fs.eduwest.com/filesys/image.jsp?fc=00quoSr2778cbd2_1441ac1409d_OUL'
    <imgsrc='http://fs.eduwest.com/filesys/image.jsp?fc=00quoSr2778cbd2_1441ac1600d_OUL'
    <imgsrc='http://fs.eduwest.com/filesys/image.jsp?fc=00quoSr2778cbd2_1441ac17ecd_OUL'
    <imgsrc='http://fs.eduwest.com/filesys/image.jsp?fc=00quoSr2778cbd2_1441ac1ae7c_OUL'/>
参考答案:<imgsrc='http://fs.eduwest.com/filesys/image.jsp?fc=00quoSr2778cbd2_1441ac17ecd_OUL';
2、<imgsrc="http://fs.eduwest.com/filesys/image.jsp?fc=00quoSr2778cbd2_1441abc7a08_OUL"/>
    A.<imgsrc='http://fs.eduwest.com/filesys/image.jsp?fc=00quoSm2778cbd2_14452719cd0_OUL'
    B.<imgsrc='http://fs.eduwest.com/filesys/image.jsp?fc=00quoSm2778cbd2_1445271d952_OUL'
    C.<imgsrc='http://fs.eduwest.com/filesys/image.jsp?fc=00quoSm2778cbd2_14452720122_OUL'
    D.<imgsrc='http://fs.eduwest.com/filesys/image.jsp?fc=00quoSm2778cbd2_144527223d5_OUL'
参考答案:B.<imgsrc='http://fs.eduwest.com/filesys/image.jsp?fc=00quoSm2778cbd2_1445271d952_OUL';
3、<imgsrc="http://fs.eduwest.com/filesys/image.jsp?fc=00quoSr2778cbd2_1441ab52c1b_OUL"/>
    <imgsrc='http://fs.eduwest.com/filesys/image.jsp?fc=00quoSr2778cbd2_1441ab6ad2d_OUL'
    <imgsrc='http://fs.eduwest.com/filesys/image.jsp?fc=00quoSr2778cbd2_1441ab6d219_OUL'
    <imgsrc='http://fs.eduwest.com/filesys/image.jsp?fc=00quoSr2778cbd2_1441ab6fbc4_OUL'/>
    <imgsrc='http://fs.eduwest.com/filesys/image.jsp?fc=00quoSr2778cbd2_1441ab72b3d_OUL'/>
参考答案:<imgsrc='http://fs.eduwest.com/filesys/image.jsp?fc=00quoSr2778cbd2_1441ab6ad2d_OUL';
4、<imgsrc="http://fs.eduwest.com/filesys/image.jsp?fc=00quoSr2778cbd2_1441aaf2a44_OUL"/>
    <imgsrc="http://fs.eduwest.com/filesys/image.jsp?fc=00quoSr2778cbd2_1441aafd31e_OUL"/>
    <imgsrc="http://fs.eduwest.com/filesys/image.jsp?fc=00quoSr2778cbd2_1441aaff463_OUL"/>
    <imgsrc="http://fs.eduwest.com/filesys/image.jsp?fc=00quoSr2778cbd2_1441ab03cdb_OUL"/>
    <imgsrc="http://fs.eduwest.com/filesys/image.jsp?fc=00quoSr2778cbd2_1441ab06283_OUL"/>
5、<imgsrc="http://fs.eduwest.com/filesys/image.jsp?fc=00quoSr2778cbd2_1441aa8b8fc_OUL"/>
    <imgsrc="http://fs.eduwest.com/filesys/image.jsp?fc=00quoSr2778cbd2_1441aaa92dc_OUL"/>
    <imgsrc="http://fs.eduwest.com/filesys/image.jsp?fc=00quoSr2778cbd2_1441aaac82a_OUL"/>
    <imgsrc="http://fs.eduwest.com/filesys/image.jsp?fc=00quoSr2778cbd2_1441aabb3ad_OUL"/>
    <imgsrc="http://fs.eduwest.com/filesys/image.jsp?fc=00quoSr2778cbd2_1441aab2e83_OUL"/>
6、<imgsrc="http://fs.eduwest.com/filesys/image.jsp?fc=00quoSr2778cbd2_1441ae9882a_OUL"/>
7、<imgsrc="http://fs.eduwest.com/filesys/image.jsp?fc=00quoSr2778cbd2_1441ae3b0df_OUL"
8、<imgsrc="http://fs.eduwest.com/filesys/image.jsp?fc=00quoSr2778cbd2_1441adc0dc1_OUL"/>
9、<imgsrc="http://fs.eduwest.com/filesys/image.jsp?fc=00quoSr2778cbd2_1441ad69bc3_OUL"/>
10、<imgsrc="http://fs.eduwest.com/filesys/image.jsp?fc=00quoSr2778cbd2_1441acd60da_OUL"/>
11、<imgsrc="http://fs.eduwest.com/filesys/image.jsp?fc=00quoSr2778cbd2_1441acb336f_OUL"/>
12、<imgsrc="http://fs.eduwest.com/filesys/image.jsp?fc=00quoSr2778cbd2_1441ac92b67_OUL"/>
13、<imgsrc="http://fs.eduwest.com/filesys/image.jsp?fc=00quoSr2778cbd2_1441afac20f_OUL"/>
14、<imgsrc="http://fs.eduwest.com/filesys/image.jsp?fc=00quoSr2778cbd2_1441af0a9e7_OUL"/>
15、从原点向圆(x-2)2+(y-2)2=1作切线t1,t2。试求x轴,y轴,t1,t2顺这次序的交比.
16、求二次曲线xy+x+y=0的渐近线方程
17、求二次曲线xy+x+y=0的渐近线方程.
18、已知二阶曲线(C):(1)求点关于曲线的极线(2)求直线关于曲线的极点.3.docx</a>
19、<imgsrc="http://fs.eduwest.com/filesys/image.jsp?fc=00quoSr2778cbd2_1441b195ef1_OUL"/>
20、<imgsrc="http://fs.eduwest.com/filesys/image.jsp?fc=00quoSr2778cbd2_1441b06097f_OUL"/>
21、<imgsrc="http://fs.eduwest.com/filesys/image.jsp?fc=00quoSr2778cbd2_1441b026dad_OUL"/>
22、<imgsrc="http://fs.eduwest.com/filesys/image.jsp?fc=00quoSr2778cbd2_1441aff54a4_OUL"/>
23、<imgsrc="http://fs.eduwest.com/filesys/image.jsp?fc=00quoSr2778cbd2_1441a95e760_OUL"/>
24、<imgsrc="http://fs.eduwest.com/filesys/image.jsp?fc=00quoSr2778cbd2_1441a935e26_OUL"/>
25、<imgsrc="http://fs.eduwest.com/filesys/image.jsp?fc=00quoSr2778cbd2_1441b149caf_OUL"/>
26、<imgsrc="http://fs.eduwest.com/filesys/image.jsp?fc=00quoSr2778cbd2_1441b0f7aaa_OUL"/>
27、<imgsrc="http://fs.eduwest.com/filesys/image.jsp?fc=00quoSr2778cbd2_1441a9d09b9_OUL"/>
28、<imgsrc="http://fs.eduwest.com/filesys/image.jsp?fc=00quoSr2778cbd2_1441a98e658_OUL"/>
29、在二维射影坐标系下,求直线A1E,A2E,A3E的方程和坐标。
30、求下列各线坐标所表示直线的方程:(1)(2)
31、求(1)二阶曲线<imgwidth="265"height="47"src=""/>的切线方程(2)二级曲线<imgwidth="128"height="25"src=""/>在直线L上的切点方程
32、经过A(-3,2)和B(6,1)两点的直线被直线x+3y-6=0截于P点,求简比(ABP).
33、求二次曲线xy+x+y=0的渐近线方程
34、设点A(3,1,2),B(3,-1,0)的联线与圆x2</sup>+y2</sup>-5x-7y+6=0相交于两点C和D,求交点C,D及交比(AB,CD)。
35、证明巴卜斯定理:设A1,B1,C1三点在一直线上,A2,B2,C2三点在另一直线上,B1C2与B2C1的交点为L,C1A2与C2A1的交点为M,A1B2与A2B1的交点为N,证明:L,M,N三点共线.
36、试证四直线2x-y+1=0,3x+y-2=0,7x-y=0,5x-1=0共点,并顺这次序求其交比
37、已知二阶曲线(C):求点<imgwidth="56"height="21"src=""/>关于曲线的极线求直线<imgwidth="112"height="24"src=""/>关于曲线的极点</li>
38、求点(5,1,7)关于二阶曲线<imgwidth="272"height="25"src=""/>的极线
39、下列概念,哪些是仿射的,哪些是欧氏的?①非平行线段的相等;②不垂直的直线;③四边形;④梯形;⑤菱形;⑥平行移动;⑦关于点的对称;⑧关于直线的对称;⑨绕点的旋转;⑩面积的相等。
40、求直线与二点,之联线的交点坐标.
41、从原点向圆(x-2)2</sup>+(y-2)2</sup>=1作切线t1,t2。试求x轴,y轴,t1,t2顺这次序的交比。
42、若有两个坐标系,同以△A1A2A3为坐标三角形,但单位点不同,那么两种坐标间的转换式为何?
43、求通过两直线<imgwidth="115"height="21"src=""/>交点且属于二级曲线<imgwidth="129"height="25"src=""/>的直线
44、写出下列点的齐次坐标(1)(2,0),(0,2),(1,5);(2)2x+4y+1=0的无穷远点.
45、一直线上点的射影变换是x′=<imgwidth="43"height="37"src=""/>,则其不变点是
46、证明双曲线:<imgwidth="67"height="41"src=""/>的两条以λ,λ&#39;为斜率的直径成为共轭的条件是λλ&#39;=<imgwidth="23"height="44"src=""/>
47、设两点列同底,求一射影对应0,1,<imgwidth="16"height="13"src=""/>分别变为1,<imgwidth="16"height="13"src=""/>,0.
48、(1)求二次曲线x2</sup>+3xy-4y2</sup>+2x-10y=0的中心与渐近线。(2)求二阶曲线<imgwidth="273"height="25"src=""/>的过点<imgwidth="51"height="21"src=""/>的直径及其共轭直径.
49、求射影变换
50、设共线四点<imgwidth="67"height="23"src=""/>,<imgwidth="57"height="23"src=""/>,<imgwidth="80"height="24"src=""/>,<imgwidth="80"height="23"src=""/>,求解:因为<imgwidth="79"height="24"src=""/>,<imgwidth="87"height="23"src=""/>,所以<imgwidth="52"height="23"src=""/>,<imgwidth="59"height="41"src=""/>,所求交比<imgwidth="48"height="47"src=""/>.
51、已知<imgwidth="83"height="21"src=""/>是共线不同点,如果解:由<imgwidth="95"height="21"src=""/>得到<imgwidth="91"height="21"src=""/>,又因为<imgwidth="393"height="44"src=""/>=<imgwidth="53"height="21"src=""/>=-2.
52、证明一线段中点是这直线上无穷远点的调和共轭点.
53、已知共线四点A、B、C、D的交比(AB,CD)=2,则(CA,BD)=_______
54、经过A(-3,2,2),B(3,1,-1)两点的直线的线坐标.
55、写出下列的对偶命题三点共线射影平面上至少有四个点,其中任何三点不共线解:(1)三线共点(2)射影平面上至少有四条直线,其中任何三线不共点.
56、求射影变换<imgwidth="109"height="19"src=""/>的自对应元素
57、举例我们已经学习过的变换群
58、求射影变换<imgwidth="96"height="75"src=""/>的不变元素
59、求联接点(1,2,-1)与二直线,之交点的直线方程.
60、求下列直线的齐次线坐标(1)x轴(2)无穷远直线(3)x+4y+1=0.
转载请注明 www.ap5u.com,辅导联系q2759931937
页: [1]
查看完整版本: 西南大学[0464]高等几何18春在线作业